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In this paper positive interpolation operators g;".P' p E (0, co), associated with an
arbitrary weight are introduced; they have been considered by Nevai for p = 2 and
weights on [ -1, 1]. Their basic properties are established and their convergence is
proved for 1 < p ~ 2 and a certain class of weights on the whole real line. These
operators have features similar to those of the Hermite-Fejer interpolation
operators. © 1985 Academic Press, Inc.

1. INTRODUCTION

We introduce the class of operators Ji';"p, p E [0, 00), defined by

(1.1 )

and their continuous analogues

(1.2)

for weights W2(x) = e 2Q(x)considered by Freud. Here Kn(x, t) is the kernel
of degree ::;; n - 1 in x, t for the partial sums of the orthogonal expansions
with respect to W2 and {Xkn} and {A kn } are the abscissas and weights in
the Gaussian quadrature of order n.

* This material is based upon work supported by the Research Grants Division of the
Council for Scientific and Industrial Research.
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POSITIVE INTERPOLATION OPERATORS

These operators are related to a number of standard operators. For
p =0, ff",p [f] is the Gaussian quadrature operator In [f] divided by flo =
J':'" CXJ W 2

( t) dt. If we remove the absolute value signs from the definition of
ff",p then we have for the case p = 1 precisely the Lagrange interpolation
operator L n [f].In fact for p = 1, the denominator is the Lebesgue function
for Lagrange interpolation. Furthermore, for the case p = 2, ff",p is the
operator F n ( da, f, x) considered by Nevai [5, p. 58] for weights on the
finite interval. For the operators '§n,p, '§n,O is just the integral of f with
respect to W2 divided by flo' For the case p = 1, again removing absolute
value signs, we get the partial sums of the orthogonal expansion for f with
respect to the weight W2

• The case p = 2 is the operator Gn(da, f, x) con­
sidered by Nevai [5, p. 74] for weights on the finite interval.

In this paper, we show that for 1 < p ~ 2, ff",p [fJ and '§n,p [f] are con­
vergent positive operators and ff",p [f] has properties of Hermite-Fejer
interpolation for p> 1. In order to state our main results, we need some
notation:

Throughout Q(x) is even, positive, and twice differentiable in (0, oc:). We
let qn denote the unique positive solution of the equation

(1.3 )

The class of weights considered is the following:

DEFINITION 1.1. We say that W 2(x) = exp( - 2Q(x)) is a regular weight
if the following hold:

(a) Explicit Assumptions. Q is an even, convex, twice differentiable
function in (- oc:, oc:) with Q(x) > 0 and Q'(x) >°for x E (0, oc:) and

xQ"(x)/Q'(x) ~ c ( - oc: < x < oc: ), (

°~ Q"(xd ~ (1 + c) Q"(X2) (0 < Xl < x 2), (1.5)

Q'(2x)/Q'(x) > 1+ c, x large enough. (1.6)

(b) Implicit Assumption.

IPn( W 2, x) W(x)1 ~ Ct q;;1/2, [xl ~ c2Qn, n? 1. (1.7)

The explicit assumptions arise from Freud [3, pp. 22, 33]. The author
knows that the explicit conditions on Q can be weakened significantly for
Lemma 4.1 to hold, and hence for the purpose of this paper. In fact (1.6) is
implied by the other conditions on Q, but for brevity and for ease of
reference, the above restrictions on Q are retained.

640/46/2-5



184 ARNOLD KNOPFMACHER

The implicit assumption (1.7) is essential for our own proofs. Condition
(1.7) is true for

m an even, positive integer, (1.8)

by [6,Theorem 1].We note that the weights Wm(x) also satisfy [6,
Theorem 2J

k= 1, 2,..., n. (1.9)

Of course for Wm(x), qn = (n/(2m))I/m, by (1.3). Under the additional
assumption (1.9) the proof of Lemma 4.8 can be simplified.

Let I be an interval in IR. Given a function f(x) uniformly continuous on
I, we let

w/(f; 1» = sup{ If(x) - f(y)1 : Ix - yl ::;; 1>, x, y EI},

that is, w/(f; 1» is the modulus of continuity of f in 1. We may assume that
w/(f; 1» is defined for all I> >°and not just near 0. When f is uniformly
continuous in IR and 1= IR, we omit the subscript I, so that w(f; 1» is the
modulus of continuity of f in IR.

Throughout c, C1 , cz, ...will denote positive constants independent of n
and x. For notational convenience the constants will not be numbered
except in a case where confusion may arise. Thus c does not necessarily
denote the same constant from line to line. By f(x),,-, g(x) we denote the
condition K 1 ::;;f(x)/g(x)::;; Kz for all relevant x, where K 1 , Kz are positive
constants independent of x.

THEOREM 1.2 (Convergence of 9;"p). Let 1< p::;; 2. Let f: IR ---* IR satisfy
the following growth condition: For some (j > 0, and for all x E IR,

(i) Let I be a bounded open interval and let f be uniformly continuous
in 1. Let J be a compact subinterval of 1. Then uniformly for x E J,

19;"p [fJ(x) - f(x)1 ::;; c(qn/ny-I r w/(f; v) v-Pdv. (1.11)
qn/n

(ii) Let f(x) be uniformly continuous in IR. Then there exists CI such
that uniformly for Ixl ::;; c1qn,

I~,p [fJ(x) - f(x)1

::;;c(qn/ny-1WP-Z(x) [If(X)1 +r w(f; v) v- pdvJ. (1.12)
qn/n
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For functions satisfying a Lipschitz condition, there is the following
coronary.

COROLLARY 1.3. Let 0 < a ::::; 1. If f satisfies in addition to the conditions
of Theorem 1.2(i) the Lipschitz condition

If(x)- f(y)l::::;c Ix- yl"

then uniformly for x E I,

x, YEI, (1.13)

1~,p[f](x)-f(x)l::::;c(qn/n)p~l, if a>p-l

::::; c(qn/n)", if tx < p-1

::::; c(qn/n)" log n, if tx=p-1.

The corresponding results for ':#n,p are as follows.

THEOREM 1.4 (Convergence of ':#n,p)' Let 1 < p::::; 2. Let

{'Xl If I W2~Pdt<UJ,
~ 00

and

(1.14)

(1.

(i) Let I be a bounded open interval and let f be uniformly continuous
in I. Let J be a compact subinterval of I. Then uniformly for x E J,

l':#n,p[f](x)-f(x)l::::;c(qn/n)P~' r. w/(f;v)v-Pdv. (1.16)
qnln

(ii) Let f(x) be uniformly continuous in IR. Then there exists CI such
that uniformly for Ixl < C1 qn'

I':#n,p [f](x) - f(x)1 ::::; c(qn/n)p~ I W p- 2(x) [If(X)1 +r w(f; v) v-Pdv1
qn/n J

(1.17)

COROLLARY 1.5. Let 0 < a::::; 1. Iff satisfies (1.13) in addition to the con­
ditions of Theorem 1.4(i) then uniformly for XEJ,

I':#n,p [f](x) - f(x)1 ::::; c(qn/n)p-I,

::::;c(qn/n)",

::::; c(qn/n)" log n,

if a>p-1

if rx<p-1

if tx=p-l.
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The above results have applications to the estimation of Christoffel
functions which we hope to pursue elsewhere. The following result shows
that the rate of convergence of Corollary 1.3 is at least in general best
possible. A similar result can be proved for the operators '§n,p.

THEOREM 1.6. Let Wm(x) be as in (1.8). Let 1 < P ~ 2. Let 0< a ~ 1. Let

f(x) = lxi'"

= lxi'"
=0,

Ixl ~1

Ixl > I and 1 < P < 2

Ix I> 1 and P = 2.

Then if n is restricted to the positive even integers,

I~,p [f](0) - f(O)1 ~(qJn)P- 1,

~(qn/nYX,

~ (qn/n yx log n,

if a>p-l

if a<p-1

if a=p-1.

The above results exclude the cases p ~ 1 and p> 2. For p = 1, one can
prove convergence of :?;.,p and '§n,p under more restrictions which are
satisfied by the weights Wm(x). For 0< p < 1 or p > 2, the operators ~,p

and '§n,p do not in general converge. For brevity,these results are omitted.
The paper is briefly set out as follows. In Section 2 we define further

notation. In Section 3 we establish basic properties of the operators. In
Section 4 we prove Theorem 1.2. The proof of Theorem 1.4 appears in
Section 5. In Section 6, we prove our lower bounds for the denominators
of ~,p and '§n,p are in a sense best possible. Finally, in Section 7, we prove
Theorem 1.6.

2. NOTATION

Let W denote an even, nonnegative function on IR with all moments

fln = f" x nW 2(x) dx,
-00

n = 0, 1, 2, ..., finite.

Also let {Pn(W2
, x)} = {Pn(x)} be the sequence of orthonormal

polynomials with respect to W2
, that is,

fOO Pm(W2,x)Pn(W2,x) W 2(x)dx=0,
-00

= 1, m=n.
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Let Yn be the leading coefficient of Pn, n = 0, 1,2,.... In keeping with the
notation of Freud and others, Kn(x, y) denotes the kernel of the
orthogonal expansion,

n-l

Kn(x,y)= l: Pk(W2,X)Pk(W2,y)
k=O

Yn x-y
(2.1 )

by the Christoffel-Darboux formula, and )'n( W2
, x) = /In(x) denotes the

Christoffel function

We denote the zeros of Pn(x) by

Xjn , j=1,2,...,n,wherexnn <xn_l,n< ... <x1n-

The Gauss-quadrature formula is represented by

n

In [f] = l: /ljn f(x jn ).
j=l

For convenience we define

n

Hn,p(x) = L /lkn IKn(x, xkn)1 p
k=l

for p > 0, n = 1, 2,.... (2.2)

By the Gauss-quadrature formula Hn.2(x) = Kn(x, x).
Finally, we let

Ilflloo = sup If(x)l.
XE ~

3. BASIC PROPERTIES

Following we list basic properties of ~,p:

LEMMA 3.1. (a) ~,o [f](x) = In [f]/,uo'

(b) ~,2 [f](x) = Fn(da, 1, x) where Fn is the operator defined in
Nevai [5, p. 58].
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(c) ff'",p [ 1] == 1.

(d) Hermite-Fe}er interpolation property:

j= 1, 2, ..., n.

For p> 1,

j= 1,..., n.

(e) ff'",p is a positive linear operator in IR., that is, f;:' 0 => ff'",p [f] ;:, O.

(f) If C(IR.) is the space of functions bounded and continuous on IR.,
with supremum norm, then II ff',,)1 C( IR) ~ C( u;q = 1.

(g) When p is a positive even integer ff'",p is a rational function of
degree (pn - p, pn - p) where only the numerator depends on f

Proof We prove only (b) and (d). The rest follow directly from the
definition.

(b) By the Gauss-quadrature formula

ff'",2 [f](x) = I Akn/(Xkn) ~(x, x kn )If~(x, t) W 2(t) dt

= I Aknf(xkn ) ~(x, xkn)/Kn(x, x)

=An(W2,x)I ~lm f(xkn) (see [5,p. 74])
II.kn

= Fn(da, j, x).

(d) Using the fact that Kn(xjn , x kn ) = 0, j i= k, and differentiating ff'",p
by the quotient rule yields the result. I

Similarly one sees:

LEMMA 3.2. (a) '§n,O [f](x) = JfW2(t) dt/flo·

(b) '§n,2[f](x)=Gn(da,j,x), where Gn is the operator defined by
Nevai [5, p. 74].

(c) '§n,p [ 1] == 1.

(d) '§n,p [f] is a positive linear operator.

(e) II'§n,pIILoo(IR)~Loo(IR)= 1.

(f) For p a positive even integer '§n,p is a rational function of degree
(pn - p, pn - p) where only the numerator depends on f
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Proof We prove only (b):

':§n,2 [fJ(x) = f f(t) K?;(x, t) W2(t) dt If K?;(x, t) W2(t) dt
I

189

[5,p,74J, I

4. PROOF OF THEOREM 1.2

LEMMA 4.1. If W2(x) satisfies the explicit assumptions of Definition 1.1
then the following results hold:

(a) Kn(X,X)~c(;JW- 2(x), XEIR.

nf [p~(X)]2~C(~)3 W- 2(x), XEIR.
k~O qn

(c) There exists c2 such that

(4.1 )

(4.2)

(d) X 1n ~ cqw

(4.5)

(f) Yn - I
-~cqn'

Yn

(g) qn~cnl/2, for n large.

(4.6)

(4.7)

Proof (a) This is Lemma 2.5 in [3, p. 25J.

(b) This is Lemma 2.7 in [3, p.27].

(c) This is Lemma 4.2 in [3, p. 33].

(d) This follows from Theorem 1 in [2, p. 49].

(e) This follows from Theorem 5.1 in [3, p. 36].



190 ARNOLD KNOPFMACHER

(f) This is (2.27) in [3, p.28].

(g) By (1.5), we see Q'(x)~cx for x large and hence by (1.3),
n=qnQ'(qn)~cq~ for large n. I

Unless otherwise stated we shall assume in the sequel that W 2 is a
regular weight. Also throughout, given x, let j = j(n, x) denote the positive
integer such that x E [xj + l,n' x jn ), whenever such an integer exists.

LEMMA 4.2. Let W 2(x) satisfy the explicit assumptions in Definition 1.1.
Then there exists c such that for x E [ - cqn' cqnJ,

(a) W(xjn )",-, W(x)",-, W(Xj+I,n),

(b) Ajn "'-' An(x) "'-' Aj+ l,n'

Proof

(a) W(x)jW(xjn ) = exp ( - f:
n

Q'(t) dt)

~expU::l,n IQ'(t)1 dt)

~exp((xjn-Xj+l,n)Q'(cqn)). (4.8)

At this stage we note that

Q'(2t)/Q'(t) ~ c,

for by (1.4) (compare [3, p.22J),

t>O (4.9)

Q'(2t)/Q'(t) = exp (fl Q"(u)/Q'(u) dU)

Hence using (4.9) and (1.3),

Then (4.8), (4.5), and this last inequality yield W(x)jW(xjn )~ c. Similarly
W(x)/W(xjn )~ c.
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(b) By (4.3) for Ixi ~c2qn'

An(X) ~ cl(qn/n) W2(x)

~ cl(qn/n) W2(xjn )

~CIAjn,

by (4.1). Similarly Ajn ~ dn(x). I

(by (a))

a, b>O.

LEMMA 4.3. Let P~ 1. Then there exists c such that uniformly
Ixi ~cqn,

n

Hn,p(x)= L AknIKn(x,xknW~cKn(x,x)P~I. (4.10)
k~1

Proof It is noted in Lemma 9.32 [5, p.171] that for XE [xj+l,n,XjnJ,

ljn( W2, x) + Ij+Ln( W2, x) ~ 1.

1~ Ajn IKn(x, Xjn )I + Aj+I,n IKn(x, xj+l,n)1

~ d jn { IKn(x, xjn )I + IKn(x, xj+l,n)I}, x E [ - cqn' cqnJ (by Lemma 4.2(b))

~djn21-I/P{IKn(x,xjn)IP+ IKn(x, Xj+I,nW}I/p, (4.11)

XE [-cqn, cqnJ. Here we have used the inequality

(a + b)P ~ 2P- I(a P+ bP),

Hence if x E [ - cqn' cqnJ, Lemma 4.2(b) yields

Hn,p(x) ~ cAjn { IKn(x, xjnW + IKn(x, x j+l,nW}

~cAjn(cAjn21-I/P)-P (by (4.11))

~ cAn(X)-P+ I

LEMMA 4.4. There exists C1 such that

(i) for lxi, ItI~ CI qn,

IKn(x, t)1 ~ C2 W-1(x) W-1(t)/(qn/n + It - xl), (4.12)

(ii) for Ixi <c1qn, It I>c2qn, C2>C 1 , we have

IKn(x, t)1 ~ C3Q;I/2W- 1(X){ IPn(t)1 + IPn-l(t)I}· (4.13)
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Proof (i) By (2.1), (1.7), and (4.6),

IKn(x, t)1 = !Yn-1 Pn(X)Pn-1(t)- Pn(t)Pn-1(X)1
Yn x- t

~ cqn(cq;1/ZW- 1(x)){ IPn(t)1 + IPn-1(t)! }/Ix- tl (4.14)

~CW-1(X) W- 1(t)/lx-tl. (4.15)

If It-xl ~qn/n, then the right member of (4.12) is no smaller than

c(n/qn) W- 1(x) W- 1(t)/2

which is an upper bound for IKn(x, t)1 by the Cauchy-Schwarz inequality
and (4.1) if Cz is large enough. On the other hand, if It-xl ~qn/n, the right
member of (4.12) is no smaller than

CZW- 1(x) W- 1(t)/(2It-xl)

which is an upper bound for IKn(x, t)1 by (4.15), provided Cz is large
enough.

(ii) This follows from (4.14) since Ix - tl > (cz - cdqn = cqn- I
Without further mention, in Lemmas 4.5-4.8, f denotes a real function,

bounded on each bounded interval.

LEMMA 4.5. Let 0<1;< 1. Let 1<p~2 and

II = I Akn(f(Xkn) - f(x)) IKn(x, xkn)IP/Hn,p(x). (4.16)
Ix - xknl < 6

Let f be continuous in a neigbourhood of a given x, and

wAf; 6) = sup If(x) - f(t)l,
Ix-tl <:;8

6 small enough.

Then there exists C1 such that uniformly for Ixl ~c1qn'

(4.17)

Proof By (4.12), (4.1), (4.3), and (4.10) for Ixl ~cqn,
1 Z " wAf; Ix - xknl) W-P(Xkn)IL

1
1~c(qn/n)P- WP- (x) ~ It

Ix-xknl<e kn (qn/n+lx-xknl)P

~ c(qn/n)P- 1WP-Z(x)( max WZ-P(u)) qn/n
lu-xi <6

(4.18 )
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Now for uE(lx-xknl, IX-Xknl +qn/n), we have

qn/n + u:C:. 2qn/n + Ix - xknl :C:. 2(qn/n + Ix - xknl)·

Hece, as w xU; u) is nondecreasing

193

with the substitution v = u + qn/n. For each k such that Ix - xknl < e, we
obtain an integral as above with range of integration

Because of (4.5), at most finitely many h-say, T many-can overlap any
interval of the form (iqn/n,(i+ l)qn/n), i= 1, 2,.... The number Tis indepen­
dent of x and k if Ixi :C:. C1qn- Furthermore each Jk is contained in the union
of at most two of these intervals. Hence

Substituting into (4.18), we obtain the desired result as W2
-

p(x):C:. 1,
UEIR. I

LEMMA 4.6. Let 0 < e< 1. Let 1 < p:C:. 2. Let

L
2

= L }'kn(f(Xkn ) - f(x)) IKn(x, xknW/Hn,p(x). (4.19)
IX-Xknl >e
IXknl ,,; cqn

Then there exists c such that uniformly for Ixi < cqn'

where

Xn(X, u) = 1,

=0,

Ix - ul > e and lui :C:. cqn

Ix - ul :C:. Ii otherwise.
(4.21 )
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Proof Let Ixi < cqw By (4.10), (4.15), and (4.3),

IL21~c(~n)P-1 Wp-2(X) { I Akn If(xkn)1 ~=:(Xki;
IX-Xknl>e X Xkn

IXknl < cqn

+ If(x)1 I A W-P(Xkn)}
IXknl < cqn kn Ix - xknl P

IX-Xknl >e

LEMMA 4.7. Let 1 < p ~ 2. Let 0 < G~ 1. Let Xn be as in (4.21) then there
exists c such that uniformly for Ixi ~ cqn'

Proof By [7, p. 50],

f
Xk-1,n 2

Akn ~ W (u) duo
Xk+ l,n

Using this and Lemma 4.2(a) for Ixi < cqn'

--,Ak=n_W_-_P...:...(X,.,;,;k;.;.:.n) fXk-1,n 2- p( ) I x-u IP 1 d- P ~ W Xkn U
Ix-xknl Xk+l,n X-Xkn Ix-ui P

f
Xk-1,n I x - u IP du

~c -- ,
Xk+l,n X-Xkn Ix-ui P

(4.22)

as 2 - p ~ 0 and W(x) ~ 1. Furthermore if u E (Xk+ l,n' Xk-l,n), (4.5) yields

I
x-u I 11 Xkn-Ul

X-Xkn = + X-Xkn

for n large, and Ix - xknl ~ G. Hence,

" 1 W-P(Xkn) -P f du
L.. Akn P ~ CG P

IX-Xknl>e Ix-xknl Ix-ul;"e/2IU-XI
lXknl ~ cqn
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LEMMA 4.8. Assume 1 < p ,,;; 2, and
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Let

(4.23 )

L 3 = L Akn(f(Xkn) - f(x)) IKn(x, xknW/Hn,p(x). (4.24)
IXknl > cqn

Then there exists C3 such that uniformly for Ixl < c3 Qn,

Proof By (4.10), (4.3), and (4.13),

x { L Akn If(xkn )! IPn~ l(XknW
IXknl > cqn

+ If(x)1 L )'kn IPn~l(XknW}. (4.26)
IXknl > cqn

Let us first estimate the first term in { } in the right-hand side of (4.26),
Assume first 1<p<2. Now by (4.23), for Ixl >c2 ,

If(x)1 2!(2- p)= If(x)llf(xW!(2- p),,;;C If(x)1 W~p(x). (4.27)

Then, by Holder's inequality,

by (4.27) and the Gauss-quadrature formula. If p = 2, (4.23) yields

n

L )'kn If(Xkn)IIPn~l(XknW";;C L )'knP~_l(Xkn)=C.
IXknl > cqn k~ 1
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Similarly, Holder's inequality may be used to estimate the second term in
{ } in the right member of (4.26). The result follows. I

Proof of Theorem 1.2. We prove (ii). The proof of (i) is similar and
easier. Now by Lemma 3.1(c)

I~,p [f](x) - f(x)1 = I~,p [f](x) - f(x) ~,p [1 ](x)1

= Ik~l (f(xkn ) - f(x)) Akn IKn(x, xknW IIHn,p(x)

:::;; ILII + IL) + IL3 1

where Ll' L2' L3 are defined by (4.16), (4.19), and (4.24), respectively.
Applying (4.17), (4.20), and (4.25) with 8=! and noting that
Xn(x, u)/jx-u!P:::;;2 P in Lemma 4.6 and using (4.22), we obtain uniformly
for Ixl < cqn'

I~,p [f](x) - f(x)1 :::;; c(qn/n )p-l W p- 2(x) {fe wAf; v) v- p dv
qnJn

+In[lfl W-P] + (In [If I W-P])I- PI2+ C lf(X)I}. (4.28)

At this stage we wish to show that sUPn In [If I W-P] < 00. To do this we
apply Corollary 2 [4] and Shohat's theorem [1, p. 93, Theorem 1.6] as
follows:

Let 0 < fJ' < fJ. By Corollary 2 [4] there exists an even entire function
G(x) satisfying

X E IR, n = 1, 2,...,

fXO G(x) W2(x) dx < 00,
-eX)

and
G(x)"-' W- 2(x) Ixl- l Ilog Ixll-(l +6'), Ixl -4 00.

In particular the growth condition (1.10) on f implies that

lim W-P(x)f(x)/G(x) = O.
Ixl~eX)

By Theorem 1.6 [1, p. 93],

lim In[lfl W-P] = feX) If(x)l ~-P(x)dx=c<oo.
-eX)

Then (4.28) yields the result. I
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Proof of Corollary 1.3. We have

r ah(f;v)v-Pdv~cr v~-Pdv.
q,Jn linin

197

If a> p - 1,the integral is bounded independent of n by J!J v"- P du. If
a<p-l, we see the integral grows like (qn/nY'·-p+l. If a=p-l,we see
that the integral grows like log(n/qn)' Now by (4.7) log(n/qn) ",log n. The
result follows from Theorem 1.2. I

5. PROOF OF THEOREM 1.4

We outline briefly the results corresponding to those of Section 4, for
operators '§n,p [f].

LEMMA 5.1. Let p> 1. There exists c such that uniformlyIor Ixl <cqn,

fXJ [Kn(x, t)IP W2(t) dt?:- cKn(x, XV-I.
- CD

Proof Fix Ixl < cqn' For some u between x and t,

(5.1 )

Now by the Cauchy-Schwarz inequality,

<C~~ P~(X)Y/2C~~P~(U)Y/2

<c(n/qn)2W- 1(x} W- 1(u),

by (4.1) and (4.2). Therefore, using (5.2) and (4.3), we have for Ixl < c2 qn,

IKn(x, t)1 ?:-c1(n/qn) W- 2(x)-c 3(n/q,YW- I (x) W-1(u) Ix-tl· (5.3)

Now let Ix - tl <eqn/n, e > O. Then Ix - ul <eqn/n, and with constant
independent of e,

W-l(u) (fU ) (eq )W-l(x)=exp x IQ'(v)1 dv <exp -;;:-Q'(cqn ) <e<e (5.4 )
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by (1.3) and (4.9). Hence, using (5.3),

for e sufficiently small, since the constants are independent of e. Therefore,
by (5.4),

~ ce (;JP-l W- 2(p-l)(X)

~ceKn(x,xy-I,

by (4.1). I
In the sequel, we assume J~oo If I w2

-p dt < 00.

LEMMA 5.2. Let 0 < e < 1. Let 1< p ~ 2 and

I: = t-II<E (f(t)-f(x)) IKn(x, t)IPW2(t)dtlf~oo IKn(x, tWW
2
(t)dt.

(5.5)

Let f be continuous in the neighbourhood of a given x, then for Ixl < C1 qn,
some Cl'

(5.6)

Proof Similar to proof of Lemma 4.5 for L 1, but easier. I

LEMMA 5.3. Let 1 < p ~ 2. Let

I~ = t-II >E (f(t) - f(x)) IKn(x, tW W
2
(t) dtIf~oo IKn(x, tW W

2
(t) dt,

III"" cqn

(5.7)

where c is a suitably small positive constant. Then uniformly for Ixl ~ cqn'

(5.8)
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Proof Similar to that of Lemma 4.6 for L2' In addition we use
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f
W2-p dt
---~c<CfJ,

Ix-tl>e Ix-tiP

uniformly for Ixl ~ cqn- I

1<p~2,

LEMMA 5.4. Assume (1.15) holds. Let 1< p ~ 2. Let

L~ = f (f(t)- f(x)) IKn(x, tW W2(t)dt IfCD IKn(x, tW W2(t)dt,
It I > cq, I - CD

(5.9)

where c is in Lemma 5.3. Then for small enough c I' we have uniformly for
Ixl~clqn,

Proof This is proved using Holder's inequality and (4.13) in a similar
way to Lemma 4.8 for L3' I

The proof of Theorem 1.4 now follows simply from Lemmas 5.2-5.4. We
deduce Corollary 1.5 in exactly the same way as Corollary 1.3.

6. BOUNDS FOR Hn.p(x)

We see from Theorem 1.2 and Theorem 1.4 that our rate of convergence
for :Fn. P [f] and '§n.p [f] depends heavily on how well we can bound
Hn.p(x) and J"=CD IKn(x, tW W2(t) dt, respectively. The following theorems
show that out lower bounds for Hn,p(x) and J,,=CD IKn(x, tW W2(t) dt are
best possible for 1< p ~ 2, at least for x in a bounded interval. By more
complicated methods one can obtain upper bounds for all x E III

THEOREM 6.1. Let I denote a compact interval in 1ft Let 1< P ~ 2. Then
uniformly for x E I,

640/46/2-6

n

I Akn IKn(x, XknW - Kn(x, XV-i.
k~1

(6.1 )
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Proof Firstly for n large enough, (4.12) and (4.3) yield

L Akn IKn(x, XknW

";C1W-P(X) I qn/n W2-P(Xkn)/[qn/n+lx-xkn IJP
Ix - xknl < cqn

";CjW-P(x) I qn/n/[qn/n+lx-xknI P],
Ix - xknl < cqn

since W 2 -P(u),,;1, uEIR. Now estimating

I qn/n/[qn/n + Ix - xknl JP
Ix - xknl < cqn

in exactly the same way as the sum in the right member of (4.18), we
obtain

I Akn IKn(x, XknW
Ix - xknl < cqn

";cj(njqny-l W-P(x) (since p> 1)

,,; cjKn(x, xy-j Wp-2(X) (by (4.3))

,,; c1Kn(x, x)P-j, (6.2)

since x is in a fixed bounded interval. Next

Ix - xknl > cqn

Ix - Xkn) > cqll

( )

P/2
";Cjq;p/2W-P(X) L A.knP~-l(Xkn)

Ix - xknl > cqn

(by Holder's inequality, as before)

(6.3 )

uniformly for XEI. Combining (6.2) and (6.3) and (4.10) gives us the
result. I

In a similar but easier manner we can prove
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THEOREM 6.2. Let I be a compact interval in IR. Let 1 < P~ 2. Then
uniformly for x E I,

fXl IKn(x,tWW2(t)dt~Kn(x,x)p-l.
-00

7. PROOF OF THEOREM 1.6

Before proving this result on the sharpness of our rates of convergence
for fJi".P we need the following preliminary lemma:

LEMMA 7.1. Let Wm(X) be as in Eq. (1.8). Thenforn=1,2, ...,

(a) There exists c such that uniformly for IXknl < cqn,

(7.1 )

(7.2)

Proof (a) See [6, Theorem 2].

(b) This follows from [6, Eq. (7)]. (Note that an used in [6] is equal
to Yn- dyno) I

Proof of Theorem 1.6. By the definition of f(x), 1 < P~ 2, we see that
f(x) satisfies the growth condition of Theorem 1.2. Therefore we can apply
Corollary 1.3 to obtain the upper bounds. We prove the lower bounds as
follows: By (6.1), (4.1), and (4.3),

Hn.p(O) ~ Kn(O, Oy-l ~ (n/qny-l.

Therefore,

1fJi".p [f](O) - f(O)1 ~ (qn/n)p-l I Akn IKn(O, XknW f(Xkn)' (7.3)
IXknl"; I

Now by (2.1), (7.1), and (7.2) and Ixknl ~ 1,

IK (0 )1 = Yn-l IPn(O)IIPn-l(Xkn)1
n , Xkn 1 1Yn Xkn

~cq~/2 IPn(O)I/lxknl.

Also, for n even, Pn+l(O)=O, so that by (7.1)

(7.4)

(7.5)
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Combining (7.3), (7.4), and (7.5) we obtain for n even,

1~,p[fJ(O)- f(O)1 ~c(qn/n)p-l L Aknf(Xkn)/lxknIP, (7,6)
IXknl " I

Now since the weight is even, for n even,

Xn/2+I,n = -xn/2,n

and hence by (4.5)

Xn/2,n '" qn/n,

More generally, for 0 < Xn/2 _ k,n < 1,

k-I
x n/2-k,n = x n/2,n + L (Xn/2-m-I,n - x n/2- m,n)

m=O

k-I
"'qn/n+ L qn/n

m=O

= (k+ l)qJn.

(by (4.5))

(7.7)

Applying this and (4.1) to (7.6),

I~,p [f](0) - f(O)1 ~ c(qn/ny-I
o~ Xnj2-k,n::;::;; 1

Using (7.7), we estimate that the number of terms such that 0 <Xn/2-k,n < 1
is order n/qn' Hence,

c(n/qny-p+l,

~c(qn/n)" c,

c log(n/qn),

a>p-l

a<p-l

a=p-l.

Finally, log(n/qn)",logn by (4.7). Hence result. I
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